张啸


世界上最快乐的事,莫过于为理想而奋斗。


ES6(7) Generator函数的语法

本文介绍ES6新标准中Generator函数的使用方法。节选自《ESMAScript 6 入门 —— 阮一峰》)

一、简介

1. 基本概念

Generator函数是ES6提供的一种异步编程解决方案,语法行为与传统函数完全不同。本章详细介绍Generator函数的语法和API,它的异步编程应用请看后面的《Generator函数的异步应用》一章。

Generator函数有多种理解角度。语法上,首先可以把它理解成,Generator函数是一个状态机,封装了多个内部状态。

执行Generator函数会返回一个遍历器对象,也就是说,Generator函数除了状态机,还是一个遍历器对象生成函数。返回的遍历器对象,可以依次遍历Generator函数内部的每一个状态。

形式上,Generator函数是一个普通函数,但是有两个特征。一是,function关键字与函数名之间有一个星号;二是,函数体内部使用yield表达式,定义不同的内部状态(yield在英语里的意思就是“产出”)。

1
2
3
4
5
6
7
function* helloWorldGenerator() {
yield 'hello';
yield 'world';
return 'ending';
}

var hw = helloWorldGenerator();

上面代码定义了一个Generator函数helloWorldGenerator,它内部有两个yield表达式(helloworld),即该函数有三个状态:hello、world和return语句(结束执行)。

然后,Generator函数的调用方法与普通函数一样,也是在函数名后面加上一对圆括号。不同的是,调用Generator函数后,该函数并不执行,返回的也不是函数运行结果,而是一个指向内部状态的指针对象,也就是上一章介绍的遍历器对象(Iterator Object)。

下一步,必须调用遍历器对象的next方法,使得指针移向下一个状态。也就是说,每次调用next方法,内部指针就从函数头部或上一次停下来的地方开始执行,直到遇见下一个yield表达式(或return语句)为止。换言之,Generator函数是分段执行的,yield表达式是暂停执行的标记,而next方法可以恢复执行。

1
2
3
4
5
6
7
8
9
10
11
hw.next()
// {value: 'hello', done: false}

hw.next()
// {value: 'world', done: false}

hw.next()
// {value: 'ending', done: true}

hw.next()
// {value: undefined, done: true}

上面的代码一共调用了四次next方法。

第一次调用,Generator函数开始执行,直到遇到第一个yield表达式为止。next方法返回一个对象,它的value属性就是当前yield表达式的值hellodone属性的值false,表示遍历还没有结束。

第二次调用,Generator函数从上次yield表达式停下的地方,一直执行到下一个yield表达式。next方法返回的对象的value属性就是当前yield表达式的值worlddone属性的值false,表示遍历还没有结束。

第三次调用,Generator函数从上次yield表达式停下的地方,一直执行到return语句(如果没有return语句,就执行到函数结束)。next方法返回的对象的value属性,就是紧跟在return语句后面的表达式的值(如果没有return语句,则value属性的值为undefined),done属性的值为true,表示遍历已经结束。

总结一下,调用Generator函数,返回一个遍历器对象,代表Generator函数的内部指针。以后,每次调用遍历器对象的next方法,就会返回一个有着valuedone两个属性的对象。value属性表示当前的内部状态的值,是yield表达式后面那个表达式的值;done属性是一个布尔值,表示是否遍历结束。

ES6没有规定,function关键字与函数名之间的星号,写在哪个位置。这导致下面的写法都能通过。

1
2
3
4
function * foo(x, y) {...}
function *foo(x, y) {...}
function* foo(x, y) {...}
function*foo(x, y) {...}

由于Generator函数仍然是普通函数,所以一般的写法是上面的第三种,即星号紧跟在function关键字后面。

2. yield表达式

由于Generator函数返回的遍历器对象,只有调用next方法才会遍历下一个内部状态,所以其实提供了一种可以暂停执行的函数。yield表达式就是暂停标志。

遍历器对象的next方法的运行逻辑如下。

(1) 遇到yield表达式,就暂停执行后面的操作,并将紧跟在yield后面的那个表达式的值,作为返回的对象的value属性值。

(2) 下一次调用next方法时,再继续往下执行,直到遇到下一个yield表达式。

(3) 如果没有再遇到新的yield表达式,就一直运行到函数结束,直到return语句为止,并将return语句后面的表达式的值,作为返回的对象的value属性值。

(4) 如果该函数没有return语句,则返回的对象的value属性值为undefined

需要注意的是,yield表达式后面的表达式,只有当调用了next方法、内部指针指向该语句时才会执行,因此等于为JavaScript提供了手动的“惰性求值”(Lazy Evaluation)的语法功能。

1
2
3
function* gen() {
yield 123 + 456;
}

上面代码中,yield后面的表达式123 + 456,不会立即求值,只会在next方法将指针移到这一句时,才会求值。

yield表达式与return语句既有相似之处,也有区别。相似之处在于,都能返回紧跟在语句后面的那个表达式的值。区别在于每次遇到yield,函数暂停执行,下一次再从该位置继续向后执行,而return语句不具备位置记忆的功能。一个函数里面,只能执行一次(或者说一个)return语句,但是可以执行多次(或者说多个)yield表达式。正常函数只能返回一个值,因为只能执行一次return;Generator函数可以返回一系列的值,因为可以有任意多个yield。从另一个角度看,也可以说Generator生成了一系列的值,这也就是它的名称的来历。

Generator函数可以不用yield表达式,这时就变成了一个单纯的暂缓执行函数。

1
2
3
4
5
6
7
8
9
function* f() {
console.log('执行了!');
}

var generator = f();

setTimeout(function() {
generator.next();
}, 2000);

上面代码中,函数f如果是普通函数,在为变量generator赋值时就会执行。但是,函数f是一个Generator函数,就变成只有调用next方法时,函数f才会执行。

另外需要注意,yield表达式只能用在Generator函数里面,用在其他地方都会报错。

1
2
3
4
(function() {
yield 1;
})()
// SyntaxError: Unexpected number

上面代码在一个普通函数中使用yield表达式,结果产生一个句法错误。

下面是另一个例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
var arr = [1, [[2, 3], 4], [5, 6]];

var flat = function* (a) {
a.forEach(function(item) {
if (typeof item !== 'number') {
yield* flat(item);
} else {
yield item;
}
});
};

for(var f of flat(arr)) {
console.log(f);
}

上面代码也会产生句法错误,因为forEach方法的参数是一个普通函数,但是在里面使用了yield表达式(这个函数里面还使用了yield*表达式,详细介绍见后文)。一种修改方法是改用for循环。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
var arr = [1, [[2, 3], 4], [5, 6]];

var flat = function* (a) {
var length = a.length;
for (var i = 0; i < length; i++) {
var item = a[i];
if (typeof item !== 'number') {
yield* flat(item);
} else {
yield item;
}
}
};

for (var f of flat(arr)) {
console.log(f);
}
// 1, 2, 3, 4, 5, 6

另外,yield表达式如果用在另一个表达式之中,必须放在圆括号里面。

1
2
3
4
5
6
7
function* demo() {
console.log('Hello' + yield); // SyntaxError
console.log('Hello' + yield 123); // SyntaxError

console.log('Hello' + (yield)); // ok
console.log('Hello' + (yield 123)); // ok
}

yield表达式用作函数参数或放在赋值表达式的右边,可以不加括号。

1
2
3
4
function* demo() {
foo(yield 'a', yield 'b'); // ok
let input = yield; // ok
}

3. 与Iterator接口的关系

任意一个对象的Symbol.iterator方法,等于该对象的遍历器生成函数,调用该函数会返回该对象的一个遍历器对象。

由于Generator函数就是遍历器生成函数,因此可以把Generator赋值给对象的Symbol.iterator属性,从而使得该对象具有Iterator接口。

1
2
3
4
5
6
7
8
var myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3
};

[...myIterable] // [1, 2, 3]

上面代码中,Generator函数赋值给Symbol.iterator属性,从而使得myIterable对象具有了Iterator接口,可以被...运算符遍历了。

Generator函数执行后,返回一个遍历器对象。该对象本身也具有Symbol.iterator属性,执行后返回自身。

1
2
3
4
5
6
7
function* gen() {
// some code
}

var g = gen();

g[Symbol.iterator]() === g

上面代码中,gen是一个Generator函数,调用它会生成一个遍历器对象g。它的Symbol.iterator属性,也是一个遍历器对象生成函数,执行后返回自己。


二、next方法的参数

yield表达式本身没有返回值,或者说总是返回undefinednext方法可以带一个参数,该参数就会被当做上一个yield表达式的返回值。

1
2
3
4
5
6
7
8
9
10
11
12
function* f() {
for(var i = 0; true; i++) {
var reset = yield i;
if (reset) { i = -1; }
}
}

var g = f();

g.next() // {next: 1, done: false}
g.next() // {next: 2, done: false}
g.next(true) // {value: 0, done: false}

上面代码先定义了一个可以无限运行的Generator函数f,如果next方法没有参数,每次运行到yield表达式,变量reset的值总是undefined。当next方法带一个参数true时,变量reset就被重置为这个参数(即true),因此i会等于-1,下一轮循环就会从-1开始递增。

这个功能有很重要的语法意义。Generator函数从暂停状态到恢复运行,它的上下文状态(context)是不变的。通过next方法的参数,就有办法在Generator函数开始运行之后,继续向函数体内部注入值。也就是说,可以在Generator函数运行的不同阶段,从外部向内部注入不同的值,从而调整函数行为。

再看一个例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function* foo() {
var y = 2 * (yield (x + 1));
var z = yield (y / 3);
return (x + y + z);
}

var a = foo(5);
a.next() // {value: 6, done: false}
a.next() // {value: NaN, done: false}
a.next() // {value: NaN, done: true}

var b = foo(5)
b.next() // {value: 6, done: false}
b.next(12) // {value: 8, done: false}
b.next(13) // {value: 42, done: true}

上面代码中,第二次运行next方法的时候不带参数,导致y的值等于2 * undefined(即NaN),除以3以后还是NaN,因此返回对象的value属性也等于NaN。第三次运行next方法的时候不带参数,所以z等于undefined,返回对象的value属性等于5 + NaN + undefined,即NaN

如果向next方法提供参数,返回结果就完全不一样了。上面代码第一次调用bnext方法时,返回x + 1的值6;第二次调用next方法,将上一次yield表达式的值设为12,因此y等于24,返回y / 3的值8;第三次调用next方法,将上一次yield表达式的值设为13,因此z等于13,这时x等于5y等于24,所以return语句的值等于42

注意,由于next方法的参数表示上一个yield表达式的返回值,所以在第一次使用next方法时,传递参数是无效的。V8引擎直接忽略第一次使用next方法时的参数,只有从第二次使用next方法开始,参数才是有效的。从语义上讲,第一个next方法用来启动遍历器对象,所以不用带有参数。

再看一个通过next方法的参数,向Generator函数内部输入值的例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function* dataConsumer() {
console.log('Started');
console.log(`1. ${yield}`);
console.log(`2. ${yield}`);
return 'result';
}

let genObj = dataConsumer();
genObj.next();
// Started
genObj.next('a');
// 1. a
genObj.next('b');
// 2. b

上面代码是一个很直观的例子,每次通过next方法向Generator函数输入值,然后打印出来。

如果想要第一次调用next方法时,就能够输入值,可以在Generator函数外面再包一层。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function wrapper(generatorFunction) {
return function(...args) {
let generatorObject = generatorFunction(...args);
generatorObject.next();
return generatorObject;
};
}

const wrapped = wrapper(function* () {
console.log(`First input: ${yield}`);
return 'DONE';
});

wrapped().next('hello!')
// First input: hello!

上面代码中,Generator函数如果不用wrapper先包一层,是无法第一次调用next方法,就输入参数的。


三、for…of循环

for...of循环可以自动遍历Generator函数生成时的Iterator对象,且此时不再需要调用next方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
function* foo() {
yield 1;
yield 2;
yield 3;
yield 4;
yield 5;
return 6;
}

for (let v of foo()) {
console.log(v);
}
// 1 2 3 4 5

上面代码使用for...of循环,依次显示5个yield表达式的值。这里需要注意,一旦next方法的返回对象的done属性为truefor...of循环就会中止,且不包含该返回对象,所以上面代码的return语句返回的6,不包括在for...of循环之中。

下面是一个利用Generator函数和for...of循环,实现斐波那契数列的例子。

1
2
3
4
5
6
7
8
9
10
11
12
function* fibonacci() {
let [prev, curr] = [0, 1];
for(;;) {
yield curr;
[prev, curr] = [curr, prev + curr];
}
}

for (let n of fibonacci()) {
if (n > 1000) break;
console.log(n);
}

从上面代码可见,使用for...of语句时不需要使用next方法。

利用for...of循环,可以写出遍历任意对象(object)的方法。原生的JavaScript对象没有遍历接口,无法使用for...of循环,通过Generator函数为它加上这个接口,就可以用了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function* objectEntries(obj) {
let propKeys = Reflect.ownKeys(obj);

for (let propKey of propKeys) {
yield [propKey, obj[propKey]];
}
}

let jane = { first: 'Jane', last: 'Doe' };

for (let [key, value] of objectEntries(jane)) {
console.log(`${key}: ${value}`);
}
// first: Jane
// last: Doe

上面代码中,对象jane原生不具备Iterator接口,无法用for...of遍历。这时,我们通过Generator函数objectEntries为它加上遍历器接口,就可以用for...of遍历了。加上遍历器接口的另一种写法是,将Generator函数加到对象的Symbol.iterator属性上面。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function* objectEntries() {
let propKeys = Object.keys(this);

for (let propKey of propKeys) {
yield [propKey, this[propKey]];
}
}

let jane = {first: 'Jane', last: 'Doe'};

jane[Symbol.iterator] = objectEntries;

for(let [key, value] of jane) {
console.log(`${key}: ${value}`);
}
// first: Jane
// last: Doe

除了for...of循环以外,扩展运算符(...)、解构赋值和Array.from方法内部调用的,都是遍历器接口。这意味着,它们都可以将Generator函数返回的Iterator对象,作为参数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function* numbers() {
yield 1
yield 2
return 3
yield 4
}

// 扩展运算符
[...numbers()] // [1, 2]

// Array.from方法
Array.from(numbers()) // [1, 2]

// 解构赋值
let [x, y] = numbers();
x // 1
y // 2

// for...of循环
for (let n of numbers()) {
console.log(n)
}
// 1
// 2

四、Generator.prototype.throw()

Generator函数返回的遍历器对象,都有一个throw方法,可以在函数体外抛出错误,然后在Generator函数体内捕获。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
var g = function* () {
try {
yield;
} catch (e) {
console.log('内部捕获', e);
}
};

var i = g();
i.next();

try {
i.throw('a');
i.throw('b');
} catch (e) {
console.log('外部捕获', e);
}
// 内部捕获 a
// 外部捕获 b

上面代码中,遍历器对象i连续抛出两个错误。第一个错误被Generator函数体内的catch语句捕获。i第二次抛出错误,由于Generator函数内部的catch语句已经执行过了,不会再捕捉到这个错误了,所以这个错误就被抛出了Generator函数体,被函数体外的catch语句捕获。

throw方法可以接受一个参数,该参数会被catch语句接收,建议抛出Error对象的实例。

1
2
3
4
5
6
7
8
9
10
11
12
var g = function* () {
try {
yield
} catch (e) {
console.log(e);
}
};

var i = g();
i.next();
i.throw(new Error('出错了!'));
// Error: 出错了!

注意,不要混淆遍历器对象的throw方法和全局的throw命令。上面代码的错误,是用遍历器对象的throw方法抛出的,而不是用throw命令抛出的。后者只能被函数体外的catch语句捕获。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
var g = function* () {
while(true) {
try {
yield;
} catch(e) {
if (e != 'a') throw e;
console.log('内部捕获', e);
}
}
};

var i = 0;
i.next();

try {
throw new Error('a');
throw new Error('b');
} catch(e) {
console.log('外部捕获', e);
}
// 外部捕获 [Error: a]

上面代码之所以只捕获了a,是因为函数体外的catch语句块,不活了抛出的a错误以后,就不会再继续try代码块里面剩余的语句了。

如果Generator函数内部没有部署try...catch代码块,那么throw方法抛出的错误,将被外部try...catch代码块捕获。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
var g = function* () {
while (true) {
yield;
console.log('内部捕获', e);
}
};

var i = g();
i.next();

try {
i.throw('a');
i.throw('b');
} catch (e) {
console.log('外部捕获', e);
}
// 外部捕获 a

上面代码中,Generator函数g内部没有部署try...catch代码块,所以抛出的错误直接被外部catch代码块捕获。

如果Generator函数内部和外部,都没有部署try...catch代码块,那么程序将报错,直接中断执行。

1
2
3
4
5
6
7
8
9
10
var gen = function* gen() {
yield console.log('hello');
yield console.log('world');
}

var g = gen();
g.next();
g.throw();
// hello
// Uncaught undefined

上面代码中,g.throw抛出错误以后,没有任何try...catch代码块可以捕获这个错误,导致程序报错,中断执行。

throw方法抛出的错误要被内部捕获,前提是必须至少执行过一次next方法。

1
2
3
4
5
6
7
8
9
10
11
function* gen() {
try {
yield 1;
} catch (e) {
console.log('内部捕获');
}
}

var g = gen();
g.throw(1)
// Uncaught 1

上面代码中,g.throw(1)执行时,next方法一次都没有执行过。这时,抛出的错误不会被内部捕获,而是直接在外部抛出,导致程序出错。这种行为其实很好理解,因为第一次执行next方法,等同于启动执行Generator函数的内部代码,否则Generator函数还没有开始执行,这时throw方法抛出只可能抛出在函数外部。

throw方法被捕获以后,会附带执行下一条yield表达式。也就是说,会附带执行一次next方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
var gen = function* gen() {
try {
yield console.log('a');
} catch(e) {
// ...
}
yield console.log('b');
yield console.log('c');
}

var g = gen();
g.next() // a
g.throw() // b
g.next() // c

上面代码中,g.throw方法被捕获以后,自动执行了一次next方法,所以会打印b。另外,也可以看到,只要Generator函数内部部署了try...catch代码块,那么遍历器的throw方法抛出的错误,不影响下一次遍历。

另外,throw命令与g.throw方法是无关的,两者互不影响。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
var gen = function* gen() {
yield console.log('hello');
yield console.log('world');
}

var g = gen();
g.next();

try {
throw new Error();
} catch(e) {
g.next();
}
// hello
// world

上面代码中,throw命令抛出的错误不会影响到遍历器的状态,所以两次执行next方法,都进行了正确的操作。

这种函数体内捕获错误的机制,大大方便了对错误的处理。多个yield表达式,可以只用一个try...catch代码块来捕获错误。如果使用回调函数的写法,想要捕获多个错误,就不得不为每个函数内部写一个错误处理语句,现在只在Generator函数内部写一次catch语句就可以了。

Generator函数体外抛出的错误,可以在函数体内捕获;反过来,Generator函数体内抛出的错误,也可以被函数体外的catch捕获。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function* foo() {
var x = yield 3;
var y = x.toUpperCase();
yield y;
}

var it = foo();

it.next(); // {value: 3, done: false}

try {
it.next(42);
} catch(err) {
console.log(err);
}

上面代码中,第二个next方法向函数体内传入一个参数42,数值是没有toUpperCase方法的,所以会抛出一个TypeError错误,被函数体外的catch捕获。

一旦Generator执行过程中抛出错误,且没有被内部捕获,就不会再执行下去了。如果此后还调用next方法,将返回一个value属性等于undefineddone属性等于true的对象,即JavaScript引擎认为这个Generator已经运行结束了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function* g() {
yield 1;
console.log('throwing an exception');
throw new Error('generator broke!');
yield 2;
yield 3;
}

function log(generator) {
var v;
console.log('starting generator');
try {
v = generator.next();
console.log('第一次运行next方法', v);
} catch(err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第二次运行next方法', v);
} catch(err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第三次运行next方法', v);
} catch(err) {
console.log('捕捉错误', v);
}
console.log('caller done');
}

log(g());
// starting generator
// 第一次运行next方法 { value: 1, done: false }
// throwing an exception
// 捕捉错误 { value: 1, done: false }
// 第三次运行next方法 { value: undefined, done: true }
// caller done

上面代码一共三次运行next方法,第二次运行的时候会抛出错误,然后第三次运行的时候,Generator函数就已经结束了,不再执行下去了。


五、Generator.prototype.return()

Generator函数返回的遍历器对象,还有一个return方法,可以返回给定的值,并且终结Generator函数。

1
2
3
4
5
6
7
8
9
10
function* gen() {
yield 1;
yield 2;
yield 3;
}

var g = gen();
g.next() // { value: 1, done: false }
g.return('foo') // { value: 'foo', done: true }
g.next() // { value: undefined, done: true }

上面代码中,遍历器对象g调用return方法后,返回值的value属性就是return方法的参数foo。并且,Generator函数的遍历就终止了,返回值的done属性为true,以后再调用next方法,done属性总是返回true

如果return方法调用时,不提供参数,则返回值的value属性为undefined

1
2
3
4
5
6
7
8
9
10
function* gen() {
yield 1;
yield 2;
yield 3;
}

var g = gen();

g.next() // { value: 1, done: false }
g.return() // { value: undefined, done: true }

如果Generator函数内部有try...finally代码块,那么return方法会推迟到finally代码块执行完再执行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
function* numbers() {
yield 1;
try {
yield 2;
yield 3;
} finally {
yield 4;
yield 5;
}
yield 6;
}

var g = numbers();
g.next() // { value: 1, done: false }
g.next() // { value: 2, done: false }
g.return(7) // { value: 4, done: false }
g.next() // { value: 5, done: false }
g.next() // { value: 7, done: true }

上面代码中,调用return方法后,就开始执行finally代码块,然后等到finally代码块执行完,再执行return方法。


六、next()、throw()、return()的共同点

next()throw()return()这三个方法本质上是同一件事,可以放在一起理解。它们的作用都是让Generator函数恢复执行,并且使用不同的语句替换yield表达式。

next是将yield表达式替换成一个值。

1
2
3
4
5
6
7
8
9
10
11
const g = function* (x, y) {
let result = yield x + y;
return result;
};

const gen = g(1, 2);
gen.next(); // Object { value: 3, done: false}

gen.next(1); // Object { value: 1, done: true }
// 相当于将 let result = yield x + y
// 替换成 let result = 1

上面代码中,第二个next(1)方法就相当于将yield表达式替换成一个值1。如果next方法没有参数,就相当于替换成undefined

throw是将yield表达式替换成一个throw语句。

1
2
3
gen.throw(new Error('出错了'));   // Uncaught Error:出错了
// 相当于将 let result = yield x + y
// 替换成 let result = throw(new Error('出错了'));

return是将yield表达式替换成一个return语句。

1
2
3
gen.return(2);    // Object { value: 2, done: true }
// 相当于将 let result = yield x + y
// 替换成 let result = return 2;

七、yield* 表达式

如果在Generator函数内部,调用另一个Generator函数,默认情况下是没有效果的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function* foo() {
yield 'a';
yield 'b';
}

function* bar() {
yield 'x';
foo();
yield 'y';
}

for (let v of var()) {
console.log(v);
}
// 'x'
// 'y'

上面代码中,foobar都是Generator函数,在bar里面调用foo,是不会有效果的。

这个就需要用到yield*表达式,用来在一个Generator函数里面执行另一个Generator函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function* bar() {
yield 'x';
yield* foo();
yield 'y';
}

// 等同于
function* bar() {
yield 'x';
yield 'a';
yield 'b';
yield 'y';
}

// 等同于
function* bar() {
yield 'x'
for (let v of foo()) {
yield v;
}
yield 'y';
}

for (let v of bar()) {
console.log(v);
}
// 'x'
// 'a'
// 'b'
// 'y'

再来看一个对比的例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function* inner() {
yield 'hello!';
}

function* outer1() {
yield 'open';
yield inner();
yield 'close';
}

var gen = outer1()
gen.next().value // 'open'
gen.next().value // 返回一个遍历器对象
gen.next().value // 'close'

function* outer2() {
yield 'open';
yield* inner();
yield 'close';
}

var gen = outer2();
gen.next().value // 'open'
gen.next().value // 'hello!'
gen.next().value // 'close'

上面例子中,outer2使用了yield*outer1没使用。结果就是,outer1返回一个遍历器对象,outer2返回该遍历器对象的内部值。

从语法角度看,如果yield表达式后面跟的是一个遍历器对象,需要在yield表达式后面加上星号,表明它返回的是一个遍历器对象。这被称为yield*表达式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
let delegateIterator = (function* () {
yield 'Hello!';
yield 'Bye!';
}());

let delegatingIterator = (function* () {
yield 'Greetings!';
yield* delegateIterator;
yield 'Ok, bye.';
}());

for (let value of delegatingIterator) {
console.log(value);
}
// 'Greetings!'
// 'Hello!'
// 'Bye!'
// 'Ok, bye.'

上面代码中,delegatingIterator是代理者,delegatedIterator是被代理者。由于yield* delegatedIterator语句得到的值,是一个遍历器,所以要用星号表示。运行结果就是使用一个遍历器,遍历了多个Generator函数,有递归的效果。

yield*后面的Generator函数(没有return语句时),等同于在Generator函数内部,部署一个for...of循环。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function* concat(iter1, iter2) {
yield* iter1;
yield* iter2;
}

// 等同于

function* concat(iter1, iter2) {
for (var value of iter1) {
yield value;
}
for (var value of iter2) {
yield value;
}
}

上面代码说明,yield*后面的Generator函数(没有return语句时),不过是for...of的一种简写形式,完全可以用后者替代前者。反之,在有return语句时,则需要用var value = yield* iterator的形式获取return语句的值。

如果yield*后面跟着一个数组,由于数组原生支持遍历器,因此就会遍历数组成员。

1
2
3
4
5
function* gen() {
yield* ['a', 'b', 'c'];
}

gen().next(); // { value: 'a', done: false }

上面代码中,yield命令后面如果不加星号,返回的是整个数组,加了星号就表示返回的是数组的遍历器对象。

实际上,任何数据结构只要有Iterator接口,就可以被yield*遍历。

1
2
3
4
5
6
7
let read = (function*() {
yield 'hello';
yield* 'hello';
})();

read.next().value // 'hello'
read.next().value // 'h'

上面代码中,yield表达式返回整个字符串,yield*语句返回单个字符。因为字符串具有Iterator接口,所以被yield*遍历。

如果被代理的Generator函数有return语句,那么就可以向代理它的Generator函数返回数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function* foo() {
yield 2;
yield 3;
return 'foo';
}

function* bar() {
yield 1;
var v = yield* foo();
console.log('v: ' + v);
yield 4;
}

var it = bar();

it.next() // { value: 1, done: false }
it.next() // { value: 2, done: false }
it.next() // { value: 3, done: false }
it.next()
// 'v: foo'
// { value: 4, done: false }
it.next() // { value: undefined, done: true }

上面代码在第四次调用next方法的时候,屏幕上会有输出,这是因为函数fooreturn语句,向函数bar提供了返回值。

再看一个例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function* genFuncWithReturn() {
yield 'a';
yield 'b';
return 'The Result';
}

function* logReturned(genObj) {
let result = yield* genObj;
console.log(result);
}

[...logReturned(genFuncWithReturned())]
// The Result
// 值为['a', 'b']

上面代码中,存在两次遍历。第一次是扩展运算符遍历函数logReturned返回的遍历器对象,第二次是yield*语句遍历函数genFuncWithReturn返回的遍历器对象。这两次遍历的效果是叠加的,最终表现为扩展运算符遍历函数genFuncWithReturn返回的遍历器对象。所以,最后的数据表达式得到的值等于['a', 'b']。但是,函数genFuncWithReturnreturn语句的返回值The Result,会返回给函数logReturned内部的result变量,因此会有终端输出。

yield*命令可以很方便地取出嵌套数组的所有成员。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
function* iterTree(tree) {
if (Array.isArray(tree)) {
for (let i = 0; i < tree.length; i++) {
yield* iterTree(tree[i]);
}
} else {
yield tree;
}
}

const tree = ['a', ['b', 'c'], ['d', 'e']];

for (let x of iterTree(tree)) {
console.log(x);
}
// a
// b
// c
// d
// e

下面是一个稍微复杂的例子,使用yield*语句遍历完全二叉树。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// 下面是二叉树的构造函数,三个参数分别是左树、当前节点和右树
function Tree(left, label, right) {
this.left = left;
this.label = label;
this.right = right;
}

// 下面是中序(inorder)遍历函数
// 由于返回的是一个遍历器,所以要用generator函数。
// 函数体内采用递归算法,所以左树和右树要用yield*遍历
function* inorder(t) {
if (t) {
yield* inorder(t.left);
yield t.label;
yield* inorder(t.right);
}
}

// 下面生成二叉树
function make(array) {
// 判断是否为叶节点
if (array.length == 1)
return new Tree(null, array[0], null);
return new Tree(make(array[0]), array[1], make(array[2]));
}
let tree = make([[['a'], 'b', ['c']], 'd', [['e'], 'f', ['g']]]);

// 遍历二叉树
var result = [];
for (let node of inorder(tree)) {
result.push(node);
}

result
// ['a', 'b', 'c', 'd', 'e', 'f', 'g']

八、作为对象属性的Generator函数

如果一个对象的属性是Generator函数,可以简写成下面的形式。

1
2
3
4
5
let obj = {
* myGeneratorMethod() {
...
}
}

上面代码中,myGeneratorMethod属性前面有一个星号,表示这个属性是一个Generator函数。

它的完整形式如下,与上面的写法是等价的。

1
2
3
4
5
let obj = {
myGeneratorMethod: function* () {
...
}
}

九、Generator函数的this

Generator函数总是返回一个遍历器,ES6规定这个遍历器是Generator函数的实例,也继承了Generator函数的prototype对象上的方法。

1
2
3
4
5
6
7
8
9
10
function* g() {}

g.prototype.hello = function() {
return 'hi!';
};

let obj = g();

obj instanceof g // true
obj.hello() // 'hi!'

上面代码表明,Generator函数g返回的遍历器obj,是g的实例,而且继承了g.prototype。但是,如果把g当作普通的构造函数,并不会生效,因为g返回的总是遍历器对象,而不是this对象。

1
2
3
4
5
6
7
function* g() {
this.a = 11;
}

let obj = g();
obj.next();
obj.a // undefined

上面代码中,Generator函数gthis对象上面添加了一个属性a,但是obj对象拿不到这个属性。

Generator函数也不能跟new命令一起用,会报错。

1
2
3
4
5
6
7
function* F() {
yield this.x = 2;
yield this.y = 3;
}

new F()
// TypeError: F is not a constructor

上面代码中,new命令跟构造函数F一起使用,结果报错,因为F不是构造函数。

那么,有没有办法让Generator函数返回一个正常的对象实例,既可以用next方法,又可以获得正常的this

下面是一个变通方法。首先,生成一个空对象,使用call方法绑定Generator函数内部的this。这样,构造函数调用以后,这个空对象就是Generator函数的实例对象了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function* F() {
this.a = 1;
yield this.b = 3;
yield this.c = 3;
}
var obj = {};
var f = F.call(obj);

f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}

obj.a // 1
obj.b // 2
obj.c // 3

上面代码中,首先是F内部的this对象绑定obj对象,然后调用它,返回一个Iterator对象。这个对象执行三次next方法(因为F内部有两个yield表达式),完成F内部所有代码的运行。这时,所有内部属性都绑定在obj对象上了,因此obj对象也就成了F的实例。

上面代码中,执行的是遍历器对象f,但是生成的对象实例是obj,有没有办法将这两个对象统一呢?

一个方法就是将obj换成F.prototype

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function* F() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}
var f = F.call(F.prototype);

f.next() // Object {value: 2, done: false}
f.next() // Object {value: 3, done: false}
f.next() // Object {value: undefined, done: true}

f.a // 1
f.b // 2
f.c // 3

再将F改成构造函数,就可以对他执行new命令了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
function* gen() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}

function F() {
return gen.call(gen.prototype);
}

var f = new F();

f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}

f.a // 1
f.b // 2
f.c // 3

十、含义

1. Generator与状态机

Generator是实现状态机的最佳结构。比如,下面的clock函数就是一个状态机。

1
2
3
4
5
6
7
8
9
var ticking = true;
var clock = function() {
if (ticking) {
console.log('Tick!');
} else {
console.log('Tock!');
}
ticking = !tocking;
}

上面代码的clock函数一共有两种状态(TickTock),每运行一次,就改变一次状态。这个函数如果用Generator实现,就是下面这样。

1
2
3
4
5
6
7
8
var clock = function* () {
while(true) {
console.log('Tick!');
yield;
console.log('Tock!');
yield;
}
}

上面的Generator实现与ES5实现对比,可以看到少了用来保存状态的外部变量ticking,这样就更简洁,更安全(状态不会被非法篡改)、更符合函数式编程的思想,在写法上也更优雅。Generator之所以可以不用外部变量保存状态,是因为它本身就包含一个状态信息,即目前是否处于暂停态。

2. Generator与协程

协程(coroutine)是一种程序运行的方法,可以理解成“协作的线程”或“协作的函数”。协程既可以用单线程实现,也可以用多线程实现。前者是一种特殊的子例程,后者是一种特殊的线程。

  • 1) 协程与子例程的差异

传统的“子例程”(subroutine)采用堆栈式“后进先出”的执行方式,只有当调用的子函数完全执行完毕,才会结束执行福函数。协程与其不同,多个线程(单线程情况下,即多个函数)可以并行执行,但是只有一个线程(或函数)处于正在运行的状态,其他线程(或函数)都处于暂停态(suspended),线程(或函数)之间可以交换执行权。也就是说,一个线程(或函数)执行到一半,可以暂停执行,将执行权交给另一个线程(或函数),等到稍后收回执行权的时候,再恢复执行。这种可以并行执行、交换执行权的线程(或函数),就称为协程。

从是线上看,在内存中,子例程只使用一个栈(stack),而协程是同时存在多个栈,但只有一个栈是在运行状态,也就是说,协程是以多占用内存为代价,实现多任务的并行。

  • 2) 协程与普通线程的差异

不难看出,协程适合用于多任务运行的环境。在这个意义上,它与普通的线程很相似,都有自己的执行上下文、可以分享全局变量。它们的不同之处在于,同一时间可以有多个线程处于运行状态,但是运行的协程只能有一个,其他协程都处于暂停状态。此外,普通的线程是抢先式的,到底哪个线程优先得到资源,必须由运行环境决定,但是协程是合作式的,执行权由协程自己分配。

由于JavaScript是单线程语言,只能保持一个调用栈。引入协程以后,每个人物可以保持自己的调用栈。这样做的最大好处,就是抛出错误的时候,可以找到原始的调用栈。不至于像一步操作的回调函数那样,一旦出错,原始的调用栈早就结束。

Generator函数是ES6对协程的实现,但属于不完全实现。Generator函数被称为“半协程(semi-coroutine)”,意思是只有Generator函数的调用者,才能将程序的执行权还给Generator函数。如果是完全执行的协程,任何函数都可以让暂停的协程继续执行。

如果将Generator函数当作协程,完全可以将多个需要互相协作的任务协程Generator函数,它们之间使用yield表达式交换控制权。

3. Generator与上下文

JavaScript代码运行时,会产生一个全局的上下文环境(context,又称为运行环境),包含了当前所有的变量与对象。然后,执行函数(或块级代码)的时候,又会在当前上下文环境的上层,产生一个函数运行的上下文,变成当前(active)的上下文,由此形成一个上下文环境的堆栈(context stack)。

这个堆栈是“后进先出”的数据结构,最后产生的上下文环境首先执行完成,退出堆栈,然后再执行完成它下层的上下文,直到所有代码执行完成,堆栈清空。

Generator函数不是这样,它执行产生的上下文环境,一旦遇到yield命令,就会暂时退出堆栈,但是并不消失,里面的所有变量和对象会冻结在当前状态。等到对它执行next命令时,这个上下文环境又会重新加入调用栈,冻结的变量和对象恢复执行。

1
2
3
4
5
6
7
8
9
10
11
function* gen() {
yield 1;
return 2;
}

let g = gen();

console.log(
g.next().value,
g.next().value,
)

上面代码中,第一次执行g.next()时,Generator函数gen的上下文会加入堆栈,即开始运行gen内部的代码。等遇到yield 1时,gen上下文退出堆栈,内部状态冻结。第二次执行g.next()时,gen上下文重新加入堆栈,变成当前的上下文,重新恢复执行。


十一、应用

Generator可以暂停函数执行,返回任意表达式的值。这种特点使得Generator有多种应用场景。

1. 异步操作的同步化表达

Generator函数的暂停执行的效果,意味着可以把异步操作写在yield表达式里面,等到调用next方法时再往后执行。这实际上等同于不需要写回调函数了,因为异步操作的后续操作可以放在yield表达式下面,反正要等到调用next方法时再执行。所以,Generator函数的一个重要实际意义就是用来处理异步操作,改写回调函数。

1
2
3
4
5
6
7
8
9
10
11
function* loadUI() {
showLoadingScreen();
yield loadUIDataAsynchronously();
hideLoadingScreen();
}
var loader = loadUI();
// 加载UI
loader.next();

// 卸载UI
loader.next();

上面代码中,第一次调用loadUI函数时,该函数不会执行,仅返回一个遍历器。下一次对该遍历器调用next方法,则会显示Loading界面(showLoadingScreen),并且异步加载数据(loadingDataAsynchronously)。等到数据加载完成,再一次使用next方法,则会隐藏Loading界面。可以看到,这种写法的好处是所有Loading界面的逻辑,都被封装在一个函数,按部就班非常清晰。

Ajax是典型的异步操作,通过Generator函数部署Ajax操作,可用同步的方式表达。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function* main() {
var result = yield request('http://some.url');
var resp = JSON.parse(result);
console.log()
}

function request(url) {
makeAjaxCall(url, function(response) {
it.next(response);
})
}

var it = main();
it.next();

上面代码的main函数,就是通过Ajax操作获取数据。可以看到,除了多了一个yield,它几乎与同步操作的写法完全一致。注意,makeAjaxCall函数中的next方法,必须加上参数response,因为yield表达式,本身是没有值的,总是等于undefined

下面是另一个例子,通过Generator函数逐行读取文本文件。

1
2
3
4
5
6
7
8
9
10
function* numbers() {
let file = new FileReader('numbers.txt');
try {
while(!file.eof) {
yield parseInt(file.readLine(), 10);
}
} finally {
file.close();
}
}

上面代码打开文本文件,使用yield表达式可以手动逐行读取文件。

2. 控制流管理

如果有一个多步操作非常耗时,采用回调函数,可能会写成下面这样。

1
2
3
4
5
6
7
8
9
step1(function(value1) {
step2(value1, function(value2) {
step3(value2, function(value3) {
step4(value3, function(value4) {
// Do something with value4
})
})
})
})

采用Promise改写上面的代码。

1
2
3
4
5
6
7
8
9
10
Promise.resolve(step1)
.then(step2)
.then(step3)
.then(step4)
.then(function(value4 {
// Do something with value4
}, function(error) {
// Handle any error from step1 through step4
})
.done();

上面代码已经把回调函数,改成了直线执行的形式,但是加入了大量Promise的语法。Generator函数可以进一步改善代码运行流程。

1
2
3
4
5
6
7
8
9
10
11
function* longRunningTask(value1) {
try {
var value2 = yield step1(value1);
var value3 = yield step1(value2);
var value4 = yield step1(value3);
var value5 = yield step1(value4);
// Do something with value4
} catch (e) {
// Handle any error from step1 through step4
}
}

然后,使用一个函数,按次序自动执行所有步骤。

1
2
3
4
5
6
7
8
9
10
scheduler(longRunningTask(initialValue));

function scheduler(task) {
var taskObj = task.next(task.value)
// 如果Generator函数未结束,就继续调用
if (!taskObj.done) {
task.value = taskObj.value;
scheduler(task);
}
}

注意,上面这种做法,只适合同步操作,即所有的task都必须是同步的,不能有异步操作。因为这里的代码一得到返回值,就继续往下执行,没有判断异步操作何时完成。如果要控制异步的操作流程,详见后面的《异步操作》一章。

下面,利用for...of循环会自动依次执行yield命令的特性,提供一种更一般的控制流管理的方法。

1
2
3
4
5
6
7
8
let steps = [step1Func, step2Func, step3Func];

function* iterateSteps(steps) {
for (var i = 0; i < steps.length; i++) {
var step = steps[i];
yield step();
}
}

上面代码中,数组steps封装了一个任务的多个步骤,Generator函数iterateSteps则是依次为这些步骤加上yield命令。

将任务分解成步骤之后,还可以将项目分解成多个依次执行的任务。

1
2
3
4
5
6
7
8
let jobs = [job1, job2, job3];

function* iterateJobs(jobs) {
for (var i = 0; i < jobs.length; i++) {
var job = jobs[i];
yield* iterateSteps(job.steps);
}
}

上面代码中,数组jobs封装了一个项目的多个任务,Generator函数iterableJobs则是依次为这些任务加上yield*命令。

最后,就可以用for...of循环一次性执行所有任务的所有步骤。

1
2
3
for (var step of iterableJobs(jobs)) {
console.log(step.id);
}

再次提醒,上面的做法只能用于所有步骤都是同步操作的情况,不能有异步操作的步骤。如果想要依次执行异步操作,必须使用后面《异步操作》一章介绍的方法。

for...of本质上是一个while循环,所以上面的代码实质上执行的是下面的逻辑。

1
2
3
4
5
6
7
8
var it = iterableJobs(jobs);
var res = it.next();

while(!res.done) {
var result = res.value;
// ...
res = it.next();
}

3. 部署Iterator接口

利用Generator函数,可以在任意对象上部署Iterator接口。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function* iterEntries(obj) {
let keys = Object.keys(obj);
for (let i = 0; i < keys.length; i++) {
let key = keys[i];
yield [key, obj[key]];
}
}

let myObj = { foo: 3, bar: 7 };

for (let [key, value] of iterEntries(myObj)) {
console.log(key, value);
}
// foo 3
// bar 7

上述代码中,myObj是一个普通对象,通过iterEntries函数,就有了Iterator接口。也就是说,可以在任意对象上部署next方法。

下面是一个对数组部署Iterator接口的例子,尽管数组原生具有这个接口。

1
2
3
4
5
6
7
8
9
10
11
12
13
function* makeSimpleGenerator(array) {
var nextIndex = 0;

while(nextIndex < arrary.length) {
yield array[nextIndex++];
}
}

var gen = makeSimpleGenerator(['yo', 'ya']);

gen.next().value // 'yo'
gen.next().value // 'ya'
gen.next().done // true

4. 作为数据结构

Generator可以看作是数据结构,更确切地说,可以看作是一个数组结构。因为Generator函数可以返回一系列的值,这意味着它可以对任意表达式,提供类似数组的接口。

1
2
3
4
5
function* doStuff() {
yield fs.readFile.bind(null, 'hello.txt');
yield fs.readFile.bind(null, 'world.txt');
yield fs.readFile.bind(null, 'and-such.txt');
}

上面代码就是依次返回三个函数,但是由于使用了Generator函数,导致可以像处理数组那样,处理这三个返回的函数。

1
2
3
for(task of doStuff) {
// task是一个函数,可以像回调函数那样使用它
}

实际上,如果用ES5表达,完全可以用数组模拟Generator的这种用法。

1
2
3
4
5
6
7
function doStuff() {
return [
fs.readFile.bind(null, 'hello.txt');
fs.readFile.bind(null, 'world.txt');
fs.readFile.bind(null, 'and-such.txt');
]
}

上面的函数,可以用一模一样的for...of循环处理!两相一比较,就不难看出Generator使得数据或者操作,具备了类似数组的接口。


参考文献

  1. 《ESMAScript 6 入门 —— 阮一峰》)